Canalblog
Editer l'article Suivre ce blog Administration + Créer mon blog
Publicité
Bernard Schaeffer
Bernard Schaeffer
Publicité
Bernard Schaeffer
Derniers commentaires
Archives
Visiteurs
Depuis la création 332 842
13 avril 2012

Light invariance principle

Galilean reference frames

In classical kinematics, the total displacement x in reference frame R is the sum of the relative displacement x’ in R’ and of the displacement vt of R’ relative to R at a velocity v : x = x’+vt or, equivalently, x’=x-vt. This relation is linear when the velocity v is constant, that is when the frames R and R' are galilean. Time t is the same in R and R’, which is no more valid in special relativity, where t ≠ t’. The more general relationship, with four constants α, β, γ and v is :

x'=\gamma\left(x-vt\right)
t'=\beta\left(t+\alpha x\right)

The Lorentz transformation becomes the Galilean one for β = γ = 1 et α = 0.

Light invariance principle

The velocity of light is independent of the velocity of the source, as was shown by Michelson. We thus need to have x = ct if x’ = ct’. Replacing x and x' in these two equations, we have

ct'=\gamma\left(c-v\right)t

t'=\beta\left(1+\alpha c\right)t

Replacing t' from the second equation, the first one becames

c\beta\left(1+\alpha c\right)t=\gamma\left(c-v\right)t

c\beta\left(1+\alpha c\right)t=\gamma\left(c-v\right)t

After simplification by t and dividing by cβ, one obtains :

1+\alpha c=\frac{\gamma}{\beta}(1-\frac{v}{c})

Relativity principle

This derivation does not use the speed of light and allows therefore to separate it from the principle of relativity. The inverse transformation of

x'=\gamma\left(x-vt\right)
t'=\beta\left(t+\alpha x\right)

is :

x=\frac{1}{1-\alpha v}\left(\frac{x'}{\gamma}-\frac{vt'}{\beta}\right)
t=\frac{1}{1-\alpha v}\left(\frac{t'}{\beta}-\frac{\alpha x'}{\gamma}\right)

In accord with the principle of relativity, the expressions of x and t should be the same when permuting R and R' except for the sign of the velocity :

x=\gamma\left(x'+vt'\right)

t=\left(t'+\alpha x'\right)

and

x=\frac{1}{1+\alpha v}\left(\frac{x'}{\gamma}+\frac{vt'}{\beta}\right)

t=\frac{1}{1+\alpha v}\left(\frac{t'}{\beta}-\frac{\alpha x'}{\gamma}\right)

Identifying the preceding equations, we have the following identities, verified independently of x’ and t’ :x=\gamma\left(x'+vt'\right)=\frac{1}{1+\alpha v}\left(\frac{x'}{\gamma}+\frac{vt'}{\beta}\right)

t=\left(t'+\alpha x'\right)=\frac{1}{1+\alpha v}\left(\frac{t'}{\beta}-\frac{\alpha x'}{\gamma}\right)

This gives the following equalities :

\beta =\gamma=\frac{1}{\sqrt{1+\alpha v}}

Expression of the Lorentz transformation

Using the above relationship

1+\alpha c=\frac{\gamma}{\beta}(1-\frac{v}{c})

we get :

\alpha =-\frac{v}{c^2}

and, finally:

\beta =\gamma=\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}

We have now all the four coefficients needed for the Lorentz transformation which writes in two dimensions :

 x=\frac{x' + vt'}{ \sqrt[]{1 -\frac{v^2}{c^2}} } t= \frac{t' + \frac{vx'}{c^2}}{ \sqrt[]{1 -\frac{v^2}{c^2}} }

The inverse Lorentz transformation writes, using the Lorentz factor γ :

x'= \frac{x - vt}{ \sqrt[]{1 -\frac{v^2}{c^2}} }t'=\frac{t - \frac{vx}{c^2}}{ \sqrt[]{1 -\frac{v^2}{c^2}} }

These four equations are used according to the needs.

Publicité
Publicité
Commentaires
Publicité